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Zusammenfassung

Im Rahmen dieser Bachelorarbeit soll ausgehend von der Grundidee eines
bestehenden Verfahrens zur Audio Resynthese [WMI1] ein neuer Ansatz fiir
strukturierte Tonquellen entwickelt und neue Anwendungsfelder dafiir er-
schlossen werden. Das bestehende Verfahren findet mogliche Sprungstellen
in einem Musikstiick und synthetisiert durch Aneinanderreihung von Seg-
menten des Stiickes ein neues, das vorgegebene Randbedingungen erfiillt. Im
Rahmen der Arbeit soll mittels Beat Tracking ein zuverlédssigeres Matching
rhythmischer Strukturen bei der Sprungstellensuche erreicht werden. Die
Qualitéat der Ergebnisse soll mit Beispielen und Vergleichen aus dem Gebiet
der kontemporédren Tanzmusik und Gegeniiberstellung mit dem urspriing-
lichen Verfahren demonstriert werden.

Weiterhin sollen algorithmische Verbesserungen ausgearbeitet werden,
die das neu Zusammensetzen an nicht hérbaren Sprungpositionen nach ge-
wiinschter Ausgabestruktur ermoglichen, um im speziellen die einfache Er-
stellung von rearrangierten Stiicken fiir einen Tanzchoreographen zu ermog-
lichen.






Abstract

This thesis improves and extends existing methods in the research area of
audio resynthesis and retargeting and extends its usage scopes. The existing
approach analyzes a musical piece for possible cut points that allow the
resynthesis of a novel soundtrack by lining up the source segments according
to specified rules. For the improvement of matching harmonic and rhythmic
structures during cut points search, beat tracking is used as core component
of this work. Segment rearrangement is improved by employing faster and
better suited algorithms.
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Chapter 1

Introduction

Music (Greek: mousike; ”art of the Muses”) is the science and art of arrang-
ing sound events and silence in temporal succession to create a continuous,
consolidated, expressive composition, playing an important role in western
societies. Dance as another major form of performing arts is usually intrin-
sically linked to a certain large subset of musical arrangements employing a
regular, uniform structure, not taking into account experimental dance or
silent dance like performances by auditory disabled people only relying on
mechanically perceivable cues like bass tones. After initial composition of
a musical score by an artist, the audible material is used and replayed in a
variety of locations and social settings, raising the demand of editing and
rearranging the record in the aftermath. Utilizing the approach of example-
based audio synthesis we propose a method for completely automatic or
user-supported rearrangement of regularly structured musical compositions
with respect to usability in dance related institutions such as academies,
theatres or clubs.

Especially in dancing academies and theatres, customly cut music is a
core element of dance choreography design. Often, choreographers create
a choreography according to a given song, limiting the creative dimension
to that specific song arrangement. They usually have no sound engineering
qualifications and need systems to support them during soundtrack creation.
They would want to segment a song, find similar parts to jump between them
without notice, rearrange them, cut them, extend them, stretch or shorten
a song or one of its parts to a given duration, create a medley song from
parts of different songs, insert measured aligned silence and so on.

We focus on music in the form of strictly structured audio, leaving out
sound as audible textured patterns lacking defined pitch, rhythm, dynamics
and timbral sonic qualities. This form of music plays a predominant role
in almost all forms of societies today but differs in form, function and style
throughout different cultures. Music drives and incarnates dance as a series
of movements and steps performed to it, creates and manipulates emotions
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and mental states of the auditor and is subject to psychological immersion.
Motion pictures without music would not be perceived in the way modern
film-making creates them, as these human senses are associated closely. The
same is true for electronic games and much work has been done in this field
in the past decades [Col08]. Not only being an art itself, music supports
and enhances the experience of artistic installations and exhibitions, though
the evolutionary creativity and artistic ability is not yet easily mimicked by
computers. [McC05] What we can already make computers and algorithms
do, is analyze the structure of a musical piece to a certain extent. What
we cannot do until today is teach a machine to reproduce the cognitive pro-
cesses running in human minds, that correctly and completely analyse the
underlying pattern of a musical performance, but the current technologies
still provide us with the basic tools necessary for machine aided rework of
a musical performance. This is where structurally aligned audible content
as described above comes into the field that can be analyzed and segmented
with prior-art technologies like beat trackers [Ros92] and structure analysis
tools [Sch06] to be rearranged in the following process. This is particularly
useful for dance applications where a choreographer can tailor a song to his
specific demands [SA10] jumping back and forth in a track, shifting logical
parts around, inserting silence or even parts from other songs like a medley
(might involve time and pitch scaling), always being aligned to the beat
grid. A dance hall DJ may automatically stretch a song to a desired length,
play it forever by letting the computer randomly select the next playing po-
sition in the musical piece or jump to the end on key press within predefined
time. The ability to do this seamless jump towards the outro part of a song
might also be interesting in automotive applications when the final destina-
tion of a programmed satellite-guided route has been reached, the engines
have been switched off or the driver’s door has been opened. Another form
of art, involving but not mutually exclusively demanding music, is perfor-
mance juggling. In the undesirable case of the juggling equipment falling to
the ground during a performance show involving musical choreography, the
soundtrack needs to be resumed at a certain location after the performer
has picked up his equipment and is ready to recover the show, while the
sound played on uninterrupted up to this point.

The previously stated uses cases for motion pictures as in [WMI11] still
apply. Composing, performing and producing a soundtrack for movies,
video clips, computer animation video games or similar visual content is
a profoundly challenging, time intensive process. Employing an automatic
system for scaling the soundtrack to the boundaries of a video source, with
respect to some certain key points in it, would be highly desirable. Real-
time soundtrack generation for electronic games’ live event adaption is also
enhanced by taking the underlying basic structure of the piece of music into
account leading to a more seamless musical experience.

These applications share the similar requirement of synthesizing a sound-



track from a given piece of music towards the user supplied constraints.
We modify the algorithm proposed by [WMII] to meet the constraints of
dance compatible and music structure aware applications. First, a sound-
track is segmented into its elementary logical parts and its measures, using
beat tracking. With a self-similarity analysis of this partition, we gener-
ate a jump-table containing appropriate transition points within the song
for seamless jumps between different sections of the track corresponding
to the users’ constraints. This method is given impetus by cut-and-stitch
approaches found in computer graphics [LHLI0]. We evaluate different algo-
rithms for optimizing the quality of these transition points. After musically
correct cuts become available, we transform the use cases stated above into
an application with real-world relevance, that is a software that simplifies
some of the tasks encountered in music and dance related environments. At
last, we try to improve the current art of music structure recognition, to
enable the rearrangement of whole parts of a musical piece, either automat-
ically as above, or according to user guided instructions and implement it
in usable software.
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Chapter 2

Related Work

The contemporary Concatenative Audio Resynthesis approach by cutting
and stitching started in the 1950s but was not known as it is today until the
past decade [LWZ04, [PB04]. A good overview is given in [Sch06].

These methods generate a partition of an audio source and build a new
audio piece of arbitrary length. The transition probabilities, along which
reconstruction takes place do not catch the source structure and therefore
let past approaches fail on more complex musical pieces.

Audio and User Directed Sound Synthesis calculates the self-similarity
of an audio source per frame and has been successfully tested on stochastic
or periodic sound pattern but not on music [CBR03|]. Audio Textures by
[LLW™02] segments input audio into short clips for Mel analysis, similarity
measurement with auto-correlation of temporal neighbours and sequence-
decided recombination and or overlay with possible effects like pitch shifting,
time scaling and amplitude setting to be added to avoid monotony but is
only applicable to sound textures and not to music. Strobl et al. summarizes
similar sound texture generation methods [SERIG06].

Concatenative Audio Synthesis [Sch06l, [ST00] uses databases of sound
snippets to assemble a specific target sound. While this approach has been
used in electronic music composition through arranging small sound snip-
pets like a mosaic [Stu04, [ZP01], it mainly works for constructing sound
textures and sound scapes and does not perform well on musical sources. A
concatenative system analyses a sound source by segmenting and describing
its characteristics and stores this information in a database. A target speci-
fication will be generated from analysis of another sound source as described
or from a symbolic score of descriptors. Then, segments are selected from
the database according to a distance and concatenation quality function to
best match the given target specifications. Finally, selected segments are
concatenated, either freely placed in time for speech synthesis or statically
at defined positions for rhythmic synthesis [Sch05].

In the past, synthesis of sound textures and patterns has been researched
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to a great extent. These schemes usually fail on structured musical sources.
To push the border on these limitations, [WM11] introduced a multi-resolu-
tion scheme for fast self-similarity analysis capturing the sonic source from
large-scale structure down to single samples allowing perfect alignment of
the cuts without blending or scaling. This approach performs reasonably
well even on structured music but has limitations regarding the usability
of the synthesized soundtracks in music theory aware environments. The
jumps proposed by this system do not necessarily correspond to the under-
lying meter of the musical source, causing irritation to the musically trained
listener or dancer who expects temporal continuity. Even the inexperienced
listener is able to gain basic knowledge about a song’s structure simply
by applying life-long informal musical training [TP80] like listening to the
radio. Another problem are jumps within the track occuring at positions
that fit harmonically but not at its musical depth level, like solo vs. tutti
instumentation, or do not match well at all.

In this thesis we are going to introduce a concept for resynthesis of struc-
tured musical sources with respect to its underlying structure. Here, Audio-
based music structure analysis like [GM94, PMK10, [Cha05] assistively drops
in, aiming to segment the audio track into its logical pieces defined by the
underlying beat, human perception and music theory. We can safely ignore
the fact that this approach cannot cope with sound having no structure or
a structure not supported by the employed analytic concept, because this
would void the usability for dance and motion arts applications. This allows
us to come up with a resynthesis solution, suitable for operation in music
structure aware environments by piecing together a target song, using only
elements structurally applicable like a measure.



Chapter 3

Beat Tracking

We describe our approach for the segmentation of music to find locations in
it, allowing seamless transitions to other positions in this chapter. A listener
should not notice these jumps in a song, at least not through rhythmic vio-
lations, that is the temporal misalignment of musical material. Recognizing
the beat in a given piece of music is crucial for basic analysis. It provides
us with necessary information to find cuts that will not void the usability
as a dance track and to recognize logical entities in a song at measure level.
Therefore we start out with the description of the science and art of beat
tracking.

3.1 What is Beat?

The beat is the elementary time unit in music, its rhythmic pulse. Grouped
beats form a measure and its number of notes and rests corresponds to
the meter, also called time signature, usually contributed by percussion
instruments. Simple time signatures are %, %, g, complex %, %, fractional
%, irrational [Fer] 13—0, 2%. Music without any percussive instruments has
an implicit beat noticeable through chord changes or its note alignment.
A strong and easily recognizable beat is a necessity in popular music to
attract the mass auditorium, unlike the absence of distinct beat patterns
as in experimental or avant-garde modern music. Classical music is usually
performed in a very expressive way, strongly varying the rhythm and beat,
to convey tension and atmospheric manipulation the casual listener is often
not familiar with. Most commonly known music attracts the audience with
its fascinating, catchy beats but is very static in performance. Strong beat
patterns of this kind enable even untrained listeners the possibility of tapping
in time with the beat. In dance music, the time signature, that is the number
of beats contained in one measure, does not change throughout the song to
enable a continuous performance. Measures are usually grouped into larger,

clearly audible entities, like verses and a chorus.
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Figure 3.1: A sample drum loop with onsets marked [Flo11]

3.2 Tracking the Beat

The recognition of beat in music in usually divided into certain phases. The
first one copes with the detection of note onsets in the song’s signal (Fig.[3.1]),
this is computing a nowvelty curve for recording changes in energy, spectral
content or pitch [BDAT05, [DP07, [Ear07, KEAQG]. The peaks of this curve
represent the possible onsets and are chosen by some kind of selection mech-
anism [BDAT05]. The next phase gives an estimation of the local tempo of
the musical track by analysing its onset patterns for recurrence and period-
icity [DP07, KEAQG, [Pee07]. The tempo is assumed to be constant within
the local analysis window, marking the trade-off between tempo robustness
and detection of tempo changes with respect to the window size. The last
phase selects the appropriate sequential beat positions for a correct descrip-
tion of the piece’s periodic beat structure (Fig. , regarding frequency of
tempo and phase of timing.

3.3 Machine Perception Limitations

Even today, beat tracking is a challenging task. Humans are usually able to
tap in time with the beat flawlessly. Over the past years, quite a number of
algorithms has evolved, coping with the extraction of beat positions in music
[GDO5]. This process, as executed by a human’s cognitive capabilities, is
difficult to model as a machine-driven, automated solution. A beat is a per-
ceptual phenomenon and does not necessarily correspond to physical beat
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Figure 3.2: A sample drum loop with estimated onsets marked. Long lines
show the down beats [Flo11]

times. It is usually accompanied by a note onset defined by strong energy in
the time-domain of the signal or altered spectral content. These hints of a
beat structure might be hidden behind soft note onsets, blurred note tran-
sitions or delayed beats, like off or back beats, leading to mis-perception of
the machine. Variations in the tempo increase these issues, and the number
of different instruments in popular music make the retrieval of the precise
note onsets difficult. Not only physical reasons account for complications
in beat recognition, as a number of musical ones also raise the bar. In pas-
sages without a physically perceivable beat, a human listener might still
be able to determine a continuous beat in the absence of note events going
along with the actual beat, whereas the machine will fail, as an automatic
determination of physical beat positions is difficult in this case, especially
during varying tempo without straight interpolation possibilities. Changes
of the time signature during the performance of a musical piece also accounts
for severe tracking problems. Even for music professionals it is not trivial
to detect and describe an accurate change of the time signature. Simple
peak-detection is not sufficient since energy peaks do not necessarily corre-
spond to beats. [GMS10] shows the difficulties arising in beat recognition
especially with expressive performances, like romantic piano music [Ear07],
marking the bar and understanding of current beat trackers. Contemporary
pop and rock music with a strong beat and constant tempo is handled quite
well by many solutions. [Dix01, MMDKOQ7| give an overview of empirical
evaluations of several beat tracking approaches.
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3.4 Real World Assumptions

According to Section music used in dance related environments follows
some assumptions like static time signatures, defined song building blocks
and a steady tempo. As described in Section state-of-the-art beat track-
ers are able to cope with this content and produce reasonable results for
real-world applications. As we focus on these dance environments, we are
in a good position to employ contemporary beat tracking mechanisms as a
reliable (in most cases) source for our research.

3.5 Selecting a Tracker

Recognizing the beat in a given piece of music is crucial for basic analysis.
It provides us with necessary information to find cuts that will not void
the usability as a dance track and to recognize logical entities in a song at
measure level. This directly implies the first demand among the following
other demands of a beat tracker.

Analyse and record beat structure The ability to correctly follow the
beat of a song, as a natural person would do by tapping in time with the
rhythm up to eighth note level for a good resolution. A transcript of all
recognized beats and its respective positions in the song has to be created.

Determine time signature The metered time of a song has to be esti-
mated to group the beats into measures. It is sufficient to focus on simple
time signatures as described in Section

Find measure beginnings Find the downbeat positions for correct song
segmentation. The down beat marks the beginning of a measure.

Adapt to varying tempo As some songs may vary in their tempo, even
if unnoticed by the untrained listener, tempo variations have to be recog-
nized and followed. Adaption to the tempo is crucial as the recorded beat
grid would lose synchronization with the song over time.

Many available beat trackers fail on these demands. Most common prob-
lems are the missing ability of finding measure onsets, not correctly detecting
measure beginnings or not accurately finding the beat onsets at all. Despite
this fact, many beat trackers tend to generate a linearly spaced beat grid
that does not adapt to tempo changes in a song. After evaluating the per-
formance of various beat trackers, like BeatRoot [Dix(7], beatsync a simple
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proof of concept tracker, BTrack [SDP09|, B-Keeper [RP0T] and the track-
ing components available for the Sonic Visualizerﬂ software, we selected
the /aufTAKTE tempo and beat tracking system by zplane.developmenﬂ
a Berlin based company focusing on state-of-the-art music processing and
analysis technology research. It was the only beat tracker tested, to reliably
track the beat signal in musical sources of our research area and has also
been field tested by a number of well-known music stage processing and
editing software vendors. [aufTAKT] analyses the input signal for its note
onsets by detecting new energy and frequency components and weights them
according to their perceptual importance. A beat analysis module computes
the actual beat position from the onset information, even if the onsets do
not necessarily correspond to the physical beat locations. [aufTAKT] deter-
mines the time signature, finds the first down beat of a measure and adapts
to varying tempo of a musical source.

Not being perfect, [auf TAKT] fails on material containing time signature
changes, lacking regular beat patterns or featuring other experimental or
uncommon musical properties. These are general problems in the research
domain of beat tracking affecting every beat tracker (see Section . This
is irrelevant according to Section [3.4] because this kind of music is not usable
on the dance floor anyway.

Lwww.sonicvisualizer.org, www.vamp-plugins.org

2[aufTAKT] V3 tempo and beat tracking
3zplane.development / Katzbachstr. 21 / D-10965 Berlin, Germany, www.zplane.de
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Chapter 4

Audio Resynthesis on the
Measure Level

4.1 Cold Starting the Resynthesizer

Now we start out describing our first approach on structural aware resyn-
thesis and the first results. We are building on the results by [WMII] using
beat tracking technology kindly provided by zplane.developmemﬂ

The existing framework provided by [WMI1] consists of a base module
capable of reading audio files and already computed pre-results from hard
disk, an algorithm for finding cuts in an audio source and a collection of
algorithms for searching a path through the source according to the user-
specified constraints.

Chapter [2| summarized current approaches on audio resynthesis and de-
scribes some flaws in the synthesized target song regarding musical structure.
So our initial focus lies on the improvement of the cut finding algorithm to
respect the basic song structure. To address these problems, we are going
to employ zplane’s [aufTAKT] technology for recognition of the beat grid
in a musical signal. The beat grid computed by [aufTAKT] contains the
sample-accurate beat positions of the input song and lets us compute its
measure boundaries. With this structural information now being available,
we can do block-wise self-similarity analysis of the input song. For similar-
ity computation, the measures found above are used as the respective blocks
and treated as follows.

The general concept is to divide an audio source into into a useful se-
quence of features (z1, z9, ..., ;) and compare its elements pairwise accord-
ing to some distance function d and store the results in a self-similarityP]

Murther referred to as zplane

2The counterpart to self-similarity matrices are self-distance matrices. The latter de-
scribe the distances between analysed frames instead of their similarity. This difference is
only a matter of a scale-directional point of view.
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matrix S(i,7) = d(x;, ;) : 4, € 1,2,3,...,n. The first to use this concept
were [EKRS&7] for analysis of chaotic systems, while [Fo099| introduced it to
the domain of music analysis for visualization of an audio recording’s time
structure.

The lengths of the measures naturally differ by a few samples and need to
be equalized for comparison. This is done by scaling the measures to match
the length of the measure with fewest samples using 3" order spline inter-
polation. Then we compute the amplitude spectra of the length-equalized
measures with the Fast Fourier Transform [CT65]. Self-similarity compu-
tation is done via the Bray-Curtis dissimilarity [BC57],

_ 2 |ui — il
d(u,v) S o] (4.1)
as error function and stored in a distance matrix (Figure . It is one of
the most well-known non—metri(ﬂ ways of quantifying the difference between
data sets and delivers robust and reliable dissimilarity results throughout
many applications.

We keep the positions of the measures with lowest distances as cut points
(see Figure for further processing. To avoid trivial cut points, the di-
agonal of the self-similarity matrix is ignored. The resulting cut positions
are then fed to the Genetic Path Algorithm by [WMI2]. This algorithm
searches a path through the input song by constructing parts from the pre-
viously found cut positions according to the user-defined constraints like the
final duration of the synthesized target song (Figure .

4.1.1 Choke Results

Using the first approach as described above, we computed cuts directly
sitting on the measure boundaries. The target song pieced together from
these cut points contain many good sounding jumps in the songs that go
unnoticed by the listener. Despite these good initial results, still a number
of problems exist. We got a number of too short parts in the synthesized
target, consisting only of one measure. Furthermore, there are cuts at the
very beginning and end of a song to cause matching, but simple repetitions
of the entire input song. Another problem is cuts that match harmonically
but lack instrumental depth, that is a transition to a musically similar part
that is performed with different instrumentation.

3Tt violates the last of three properties defining a metric: the triangle inequality
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Figure 4.1: Results of initial approach
Figure shows locations in the song to jump perceptually smooth from
the time position tagged on the abscissa to the time position shown on the
ordinate. Figure displays the path plot of desired length, computed
using [WMI11]’s genetic path algorithm, with the blue diagonals indicating
the parts of the source song to be copied and the green lines visualizing the
jumps in the source song. The self-similarity matrix is shown in Figure
Blue colors indicate a high, red colors a low similarity. As every measure is
very similar to itself, the diagonal is ignored during cut search.

This example shows Deer in the Headlights by Adam Young.
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Figure 4.2: Analysis window and its position

+ cuts exactly at measure boundaries

+ many good sounding cuts

— too short cuts, i.e. only one measure

— cuts at the very beginning and end of a track causing simple repetitions

— harmonically matching cuts but missing instrumental depth, that is a
cut between similar parts but played by different instruments

4.2 Refining the Comparison Metrics

Our initial approach resulted in many good sounding cuts but still has some
flaws. For better transition results, the analysis focus is shifted from the
single measure used as window before, to an area around the measure borders
of the size of two times the mean size in samples of all measures in a song.
We ignore the first and last measures to avoid problems with the analysis
window size at the song borders and as a trivial solution for the repetition
problem described in the previous section. The analysis window is then
smoothed with a Hanning Window [BTTT59], a taper window commonly
used in digital signal processing to weight the sampled input according to
its definition, that fully includes the measure border and decays its inclusion
to zero when approaching the window borders (Figure .

4.2.1 Results of the Refined Comparison Metrics

The adjustment of the analysis window mainly resulted in harmonically bet-
ter matching cuts. Due to the extended and weighted lookE| taken around
the measure borders, that is the actual transition regions, many cuts now

*Using the Hanning Window.
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Figure 4.3: Results of Refined Comparison Metrics (same example song as
above)
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match perceptually smoother, as not only the measure contents are com-
pared to each each other. As a side effect the problem of simple repetitions
of a song is solved by ignoring the first and last measure during analysis.

4.3 Respecting Perception

For the further enhancement of the cut quality, we take the human sound
perception characteristics into account during the similarity analysis phase.
The ability of hearing is not solely a mechanical phenomenon of alternating
pressure travelling through the air but rather a sensory and perceptual event.
Mechanical sound waves arriving at the listener’s ear are transformed to
neural action potentials for further processing within the brain.

The scientific field of psychoacoustics models the transformation of phys-
ical signals towards an auditory impression in sequential steps, linked to the
human’s ear and cognitive signal processing [Ste03|]. The research therefore
focuses on the relation between objectively physical stimuli and their human
perception to model hypotheses on auditive processing. It is advantageous
not to only consider the mechanics of an environment but also the connection
of these to the human ear and brain, involved with the listening experience.
The ear has a non-linear response regarding different sound intensity levels
called loudness. Loudness defines the attribution of auditory sensation in
terms of which sounds can be ordered on a scale extending from quiet to
loud. Different filters have been proposed to adjust measured sound events
to perceived loudness of the average human.

The A-Weighting curve is one of four curves (A, B, C, D) for loud-
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ness perception adjustment (Figure . These different curves account
for different loudness of sound in ascending order, from A used for normal
environments up to D for loud aircraft noise. The A-Weighting curve derives
from the 40-phon equal loudness contour proposed by Fletcher and Munson
in 1933 as an approximation of its inversion to resemble gain (Figure [4.4D)).
The original investigation explored the relationship between loudness lev-
els and the ear’s varying frequency response. Volunteers were exposed to
pure tones of varying frequency and were asked to adjust the sound levels
to a reference tone. According to the results, the human ear is less sensi-
tive to low frequency sounds. This experiment has been repeated in 1956
by Robinson and Dadson resulting in different curves that were considered
to resemble the response of the human ear more accurately and led to the
1SO226 Standard [ISO03|]. Doubts on their validity raised the demand for
another survey and resulted in a new revision of the standard as of 2003,
showing the close similarity of current research and the 40-phon contour by
Fletcher and Munson that provided the base for the A-Weighting filter:

122002 - f4

A= e Vo (e (72 12200

(4.2)

Loudness perception generally is a much more complex task than just A-
Weighting [OIs72], but it delivers a good approximation sufficient for our
application. We therefore apply the A-Weighting to our analysis window
with the same setup as in the previous section. After computing the Fourier
Transformation of the window, the energies of the corresponding frequen-
cies are obtained. Now the sound pressure can be calculated as the local
deviation from the ambient atmospheric pressure.

p=rA
The logarithmic sound pressure level measure in decibel is given by

Lp[dB] = 20- l0910£
Po

The A-Weighting curve is now applied to the sound pressure level
L[dB(A)] = Ly[dB] + A(f)

and then transformed back into sound pressure with

L[dBA] Lp[dB] A(f) A(f)

We now compare the perceptually weighted analysis windows pairwise as
described earlier to compute the self-similarity matrix of the input song.
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4.3.1 Results by Perception

Retaining the positions of the highest similarities again improves the cuts
quality. While the previous approach of placing the analysis window to over-
lap two measures resulted in significant improvements regarding harmoni-
cally correct cuts, A-weighting removed some of the incorrect cuts regarding
instrumental depth or voice articulation.

With the perceptually weighted analysis, we are able to generate a novel
soundtrack according to a user’s constraints containing transitions that go
mostly unnoticed by the listener.

Still some problems exist, for the most part only relevant to the trained
listener, who might perceive, in case of being familiar with a song, some
structural cut misalignments, for example the introduction of a percussive
background pad or a similar repetitive but quietly embedded texture, that
fits musically but is otherwise not present in the song’s genuine succession.
Differing voice articulations also account for badly executed transitions rec-
ognized by the professional listener, as the vocalist might raise their voice
in the progression of the source measure and start out with the same at the
destination.

The few cuts not matching completely do not break our approach for
the resynthesis application, nor limit the cut search space too strictly, as
it would be done by only allowing a very small set of cuts, matching every
underlying instrumentation and articulation in every possible detail.

4.3.2 Roadmap

The results obtained until now enable the next step of constrained audio
resynthesis: the reassembly of the segmented musical content to generate a
novel soundtrack according to specific guidelines.

The next chapter presents approaches handling the navigation and rear-
rangement of the segments.



Chapter 5

Pathfinders

5.1 Navigating the Segmented Content

In the previous chapter we described the retrieval of cuts, that are posi-
tions in a song, to allow transitions between each other due to their similarity
going mostly unnoticed by the listener. A cut has a start and end position,
defining the source and target of a jump within a song. The progression of
the song segments selected according to user-defined rules is called a path.
This path begins at the user-specified start position in the input song and
runs along the start position of the first cut. The path is now continued
from the end position of that cut until the start position of the next cut
is reached and so on to finally end at the user-supplied path’s destination
position.

This chapter explains different approaches of stitching together the song
segments, using methods running almost unattended to those requiring a
certain level of human interaction. Most of these derive from the use-cases
given in the introductory chapter (/1) and are implemented in concept studies
for evaluation as laid out in the next chapter.

5.2 Time Scaling

We start out with the most simplistic resynthesis application of scaling a
musical piece in time by lining up matching segments to meet the constraints
of a given song length.

5.2.1 Genetic Path

As we build on the results by [WMI11], we have a set of algorithms for finding
a path through the segments of a song at our disposal. The most mature
and applicable algorithm of their collection is the Genetic Path Algorithm
that has been described in-depth in [WMI2]. It basically generates a huge
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number of path candidates, iteratively alters them, and selects the best
one according to the specified length constraints. The algorithm quantifies
the quality of a path by measuring an energy functional consisting of the
comparison of the user-specified duration to the path length, the actual
cut quality and segment repetition suppression term. The optimal path is
found by minimizing this energy while generating a large number of paths
with crossover and mutation iteratively selecting the best ones. The Genetic
Path Algorithm is fed a number of the best cuts found and run with a user-
defined output length constraint, like generating a soundtrack three times
the duration of its input song. Due to the high quality cuts emitted by our
methods described in chapter [4] the algorithm performs reasonably well on
generating syntactically correct soundtracks.

The downside of this approach is its runtime speed. Genetic algorithms,
due to their general problem solving strategy, are applicable to a large num-
ber of areas with a vast search space, but without necessarily knowing much
about their specific case. The algorithm’s performance is not sufficient for
generating a novel soundtrack in time when it comes to real-time applica-
tions. We therefore demand a faster method for finding the path through a
song.

5.3 Respect the Measure

The next step is to find an algorithm to target the computational speed is-
sues encountered above and simultaneously respect user-supplied structural
constraints. These constraints represent a rearrangement of manual song
annotations on the measure level to describe how the resulting generated
soundtrack’s structure should look.

5.3.1 Structural Constraints with Genetic Path

Having been around and tested for quite a while, our first objective is to
modify the Genetic Path Algorithm to pay attention to user-defined struc-
tural constraints. To accomplish this, we extended the energy functional by
[WMI2]

EW = Lyt + Eduration + Erepetition ’ (51)

with a weighting term for comparing the user-annotated song structure
ground truth to the user-given novel song structure defined by rearrang-
ing elements of the ground truth. Our structure penalty term segment-wise
compares the annotations of the path generated by the Genetic Algorithm
to the ground truth annotations and reads as follows:

Estructure = Z Sgi - Sz (5'2)
Sepath
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That leads to the final energy functional
Egenetic - EW + Estructure . (53)

Now it is possible for the user to give an input labelling for the original
soundtrack and define a desired output label succession. The algorithm
will attempt to find a path through the audio material with respect to the
previously computed cut points to represent the user’s desired output most
closely.

Genetic Measure Results

When there are enough cut points available in the regions to reassemble, the
algorithm will produce a novel song that only roughly matches the structure
given by the user. The availability of cuts is the most profound weakness
of this approach. Often severe problems occur due to the design of the cut
detection algorithm. The Genetic Path Algorithm is ultimately restricted
to a certain number of highest rated cuts by the cuts detection algorithm.
The user cannot override cut decisions by stating his superior knowledge
of certain part progressions. In most cases the user asks the algorithm to
produce structural successions of different, and sometimes stretched, logical
song parts. These best cuts allow closely matched simple output length
constraints as described above but do not cover all portions of the song
permitting jumps within every part. Allowing more cuts just leads to more
cuts closely between the best ones (closing the lines as seen in visually
spoken) and does not allow for more jump possibilities.

Due to these facts, the genetic approach generates somewhat inaccurate
results when a novel song of a certain structure is requested. We therefore
raise the demand for more precise results.

The speed issues remain to be addressed and the performance is far away
from real-time.

5.3.2 Structural Constraints with Belief Propagation

We try to address the inaccuracies caused by the former genetic approach
with Belief Propagation, also known as sum or max-product message pass-
ing. Belief Propagation, first proposed by [Pea82], is a message passing
algorithm performing inference on graphical models like Markov Random
Fields (MRF) or Bayesian Networks which have been successfully employed
in artificial intelligence and information theory. We are relying on the max-
product implementation by [TF03]; more information on Belief Propagation
can be found in [YEWO3].
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Figure 5.1: Energy matrix representing the user-annotated structure of the
input song (columns) and output song (rows). To fix a measure at a certian
position, all other measures are to be penalized in that row.

To employ Belief Propagation for our scenario, we translate our problem
to a MRF formulation that is defined by two energy terms:

min Y o7, T5) + (1= d(ir, 1) (5.4)

The first term accounts for costs of input measure j after input measure
7 and is the self-similarity matrix computed in chapter The second one
describes the cost for input measure j at output position ¢ as n x m binary
matrix where n is the number of input measures and m the number of output
measures.

This matrix also represents the user-annotated input and output song
structure with the n-th column being the information whether the n-th input
measure is allowed for the m-th output measure row (Figure [5.1).

Elements of ones penalize the usage of that specific measure while ele-
ments of zeroes allow it. Begin and end measures of a logical song part need
to be fixed to ensure a smooth transition between them. Measures of non-
adjacent but otherwise logical equal parts from the input may be allowed
for an output measure.

Belief Propagated Results

The Belief Propagation approach delivers ultra-fast results within a second
on a current home computer and is suitable for real time resynthesis, com-
pared to the genetic algorithm that has a minimum runtime of about one
minute. This approach directly operates on the measure-level and produces
results on behalf of the user’s request, with a synthesized target song con-
taining exactly as many measures as defined.

In the case of the target song not simply being a rearrangement of the
original musical large scale structure, that is shifting around the chorus and
verses, a jump is forced with respect to the locally best cut points within
a certain song part. When the user requests a defined part like a verse
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Figure 5.2: Self-similarity matrix of an isolated song part. Each of the ten
best cut positions, forming the symmetrical secondary diagonals, only allow
advancement or retrogression of exactly eight measures. Every extension
for this specific part requires at least the addition of a multiple of eight
measures to maintain smooth transitions.

or chorus to be extended by very few measures to fit their application,
a transition may be noticeable by the listener due to the lack of highest
quality cuts to allow the insertion of such a short segment. In most cases
the local maxima within a song part lie a number of measures apart, so
the user may want to take into account the minimum extension length a
part requires to be seamlessly enlarged (Figure . This trade-off between
desired measure number, that is song length, and highest transition accuracy
cannot be eliminated by our approach as it would require further manual
sound-technical processing and modification of the input song.

5.3.3 Time Scaling with Belief Propagation

Time scaling as done with the Genetic Path approach can also be done em-
ploying Belief Propagation. Similar to Figure the user has to supply a
matrix that describes the desired length constraint by fixing the first and
last measure of the input song and filling the rest with no penalizing en-
tries. Since Belief Propagation produces a song of exactly as many output
measures as defined, the user has to select the length of erosion or dilation
according to the distances of the best jumps as described in the previous
section. Sticking to these guides, this approach produces good results, oth-
erwise the selection of the best cuts will be overridden and cuts of diminished
quality will be chosen leading to degradation of the overall quality of the
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synthesized target song.



Chapter 6

Results

This chapter gives an overview of the results that have been achieved using
the methods described throughout this paper. So far, methods on finding
and selecting good cut points in a song, as well as approaches for using these
for reassembly of a novel song, have been proposed.

At first we summarize the quality of the acquired cut points in a song.

6.1 Quantifying the Cuts’ Quality

We start out with an estimation of the quality of the cuts that have been
found in Chapter Due to the nature of music, quantification has to be
done by a human listener. Audio snippets around the cut positions have
been extracted and saved for manual analysis. A listener then rated the
cuts according to three different levels. Cuts that expose strong internal
rhythmic or harmonic mismatches noticeable by every untrained listener are
rated with level one. Mismatches that account only for slight distraction and
are recognizable only to the experienced listener are rated level two. Level
three rating is assigned to cuts not recognizable by rhythmic, harmonic or
melodic violations. For a comparison of the three different approaches of
Chapter [4] we compare the 40 best cuts generated with each of the methods
of each randomly selected song.

Table shows the cut quality evaluated by a trained listener for our
three incrementally improved approaches. Some songs’ cuts improve heavily
while switching from the first to second method using a measure-border
analysis window whereas others are improved with perceptual weighting.
The overall quality improves with every method advancement except for one
example that yields slight harmonic misalignment in one cut with perceptual
weighting.
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Cuts Quality
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Covenant — Lightbringer 31. 3 6,40 0 040 0O O
Friska Viljor — In the Nude 19 5 16134 5 13 4 0
Italo Brothers — Radio Hardcore 33 1 6,40 0 039 1 O
Neil Young — Southern Man 38 2 0138 2 013 1 0
Owl City — Deer in the Headlights 34 2 440 0 0]40 0 O
Sunrise Ave — Hollywood Hills 30 9 1130 9 1(3 4 O

Table 6.1: Resulting cuts’ quality ordered by proposed methods

6.1.1 Comparison with Previous Results

This section gives a comparison of the results by [WMI11] with results gen-
erated using our most mature perceptual approach and the same inputs.
[WMI11] used some input songs from a variety of genres, that are of a
more pathological nature in our setting, as they are not directly related
to dance, like classical performances, and therefore expose problems in beat
pre-processing as described in Chapter

Table has the comparison in numbers. Even the classical example
exposes a number of good cuts with our methods. The fundamental problem
in this case is the pre-processing stage of beat tracking. In some song areas,
the tracking works quite well as opposed to others with high dynamics or
blurred note onsets. Incorrect measure beginnings often lead to consistent
cuts when this incorrectly shifted phase has the same offset at the cut’s
target position. The same applies to the folk example. Difficulties arise due
to timing variations and the musicians free interpretation and articulation
of certain passages where the approach unaware of the musical structure
has advantages. The Electronic, Hiphop and Punkrock examples give good
results by their straight and homogeneous designs, especially the electronic
one.

6.1.2 Cuts Quality Estimation of Contemporary Dance Mu-
sic

The next estimation focuses on music that represents common styles often
played in dance academies and rehearsal situations.
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Comparison to Previous Results
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Bob Dylan — Blowing in the Wind (Folk) 27 7T 61(22 7 11
Dendemann — Endlich Nichtschwimmer (Hiphop) 30 3 7|40 0 O
Digitalism — Zdarlight (Electronic) 19 9 12139 1 0
Pyotr Ilyich Tchaikovsky — Valse in A (Classic) 380 2(29 2 9
Zebrahead — Playmate of the Year (Punkrock) 34 2 4140 0 O

Table 6.2: Comparison of the songs used for evaluation by [WMII]

This song selection (Table features a large number of dance styles
included in the official training programme by the ADTV[H

6.1.3 A Note on Computational Speed

All our evaluated approaches feature the Fast Fourier Transform (FFT) for
distance comparison between analysis windows. This transform seems to
be the bottleneck in our cut detection implementations as the runtime for
different input songs ranges from 10 seconds to several minutes. Internal
optimizations by the employed FFT implementationﬂ may slow down the
computation process due to size of characteristics of the analysis window.
The performance achieved so far is not real-time but this step has only to
be done once for every song. After loading the pre-computed results, a user
can rearrange the input song according to their demand in real-time.

6.2 Reassembly results

We now summarize some thoughts on our path search approaches proposed
in Chapter

6.2.1 Genetic Path

The Genetic Path method has originally been proposed by [WMII] for this
domain and has only been used and modified by us. This method proved to
be inaccurate for our application to a certain extent, as it is restricted to a

! Allgemeiner Deutscher Tanzlehrerverband e. V.
2Numpy.fft
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Contemporary Dance Music

fofE
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Slow Waltz 40 0 O
Slow Waltz 33 7 0
Viennese Waltz 35 5 0
Viennese Waltz 39 1 0
Quick Step 40 0 O
Samba 36 4 0
Cha cha 3r 3 0
Disco Fozx 40 0 O
Disco Fox 40 0 O
Foxtrot 38 2 0
Rumba 38 2 0
Jive 38 0 2

Table 6.3: Cut Quality of Contemporary Real-World Dance Music

given number of the best cuts, that do not allow for fine-tuned time scaling
due to the nature of a song structure and target lengths will be matched
only approximately. Figure shows an example path through a song that
has been stretched to circa 8 minutes.

We extended the algorithm’s energy functional by a structural weight-
ing term without great success. User defined target song structures were
matched only roughly, rendering this approach, despite its runtime, unus-
able for dance floor applications. Rearrangement computation according
to some users’ specified structure rules should not take between a half and
several minutes.
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Figure 6.1: Visualization of path through Deer in the Headlights by Adam
Young with time scaling to 8 minutes

6.2.2 Belief Propagation

With Belief Propagation we sped up the path computation while improving
target song assembly with respect to structural output constraints. The user
has to supply a measure-wise annotation of the input song structure and the
desired target arrangement to get a path through the song in less than a
second. This algorithm can be forced to produce a novel song of a certain
number of measures by supplying it with the whole Self-Similarity Matrix.
Modifications that music theoretically do not fit for the target structure can
be made but will decrease the quality of the target, as low quality cuts have
to be chosen.
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Figure 6.2: Visualization of path through Vayamos Companeros by Mar-
quess. Red boxes show positions of input measures in the synthesized target

song



Chapter 7

Conclusion and Discussion

This chapter finalizes this thesis by taking a look at achievements, pitfalls,
milestones and the way, our work has developed. We successfully proposed
a novel audio resynthesis approach, based on the rhythmical structure of an
audio source.

The first part comprised the detection of cut points, that is the start and
end position of a jump in the musical source, while the second part extended
existing methods of song rearrangement and presented a novel reassembly
approach.

7.1 Thoughts on Measure-Based Audioresynthesis

Three incrementally improved methods in the field of similarity analysis for
audio resynthesis have been proposed. Beat tracking gave a great reduction
of search space, as now only defined transitions—the measure boundaries—
are to be considered as jump positions in the musical source.

At first, we compared the whole measure contents pair-wise, found by the
underlying beat tracking technologyﬂ, with good initial results (see Chap-
ter @, proving the structural approach appropriate for this application.

In the second step the analysis window has been shifted from the measure
contents to the measure boundaries for better transitions, and weighted with
the Hanning function to smooth out the signal at its borders. Boosting the
positive results, still some outliers remain to be addressed.

The third step perceptually weighted the window as described in the
previous iteration by applying A-Weighting, a human loudness perception
curve according to [ISO03|. This last iteration removed many remaining
cuts that could cause harmonic or transitional irritation to the listener.

Whilst we produced many very good results, the cut points search is
only as good as its preprocessing step of tracking the beat. With still some,
for the trained listener, slightly notable jumps left, we achieve an overall

HaufTAKT], www.zplane.de
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performance on a real-world application enabling level for modern music,
especially dance music.

7.2 Thoughts on Song Reassembly

The follow-up of the cut points search is the task of finding a good path
through the now segmented musical content for which we presented two ap-
proaches throughout this thesis. Our first and obvious approach was to use
the existing Genetic Path Algorithm [WMI2] for the rather simple use case
of extending or shrinking the length of the input song to a defined length.
While the genetic algorithm produced good reassembly results due to the
selection of the best high quality cuts produced in the previous steps, it is
exclusively limited to the number of supplied cuts and therefore might not
be able to fully meet the user-defined length constraint. In case of bad cuts,
that are cuts that will be noticed even by the untrained listener, the algo-
rithm will also produce results according to the previous step’s performance.
Its run-time speed is somewhat high compared to the user’s patience waiting
for results, due to its general problem solving capabilities that lack specific
knowledge on the certain task to be solved.

The second, more complex use case involved not only scaling the input
song in time, but also rearranging it to produce an output song following
certain structural succession constraints. To accomplish this goal, the en-
ergy terms of the genetic path approach have been extended by structural
measure awareness to enable the user to supply measure-wise input and
output structure annotations. This attempt turned out not to work well, as
the still good sounding target song did not—or only roughly—resemble the
user’s desired target annotation.

These limitations are caused mainly by the absence of cuts within the
desired transition regions, that is directly between the actual song parts. A
further problem is the conflict of objectives between the structural energy
and the repetition energy origination from the genuine energy description
by [WM12], but only in a theoretical sense, as disabling it does not improve
results significantly.

Enter Belief Propagation. To overcome the limitations experienced using
the genetic path algorithm, we proposed the usage of the Belief Propaga-
tion Algorithm originally introduced by [Pea82], that proved appropriate to
solve the path search problem in real-time with measure-accurate results.
Measure-wise input and output annotations have to be supplied that may
force jumps at positions where the user knows them to work correctly for
their purpose. Annotated song parts may be removed, scaled or shifted
around, with the musical design limitation that unnoticeable cuts within a
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part may lie a certain number of measures apart, so a part may only be
seamlessly scaled with respect to that factor.

Informing the user about these scaling factors according to their anno-
tated song structure leads to the synthesis of novel soundtracks without
auditory violations when following these hints.

7.3 The Big Picture

A user, like a dance choreographer as intended by our main use cases, is now
given a tool to aid the construction of a novel soundtrack according to their
structural demands. Without deeper knowledge about sound editing prac-
tices, large structural changes can be made to a song, solely with knowledge
about the song’s basic architecture, that is the idea of what is beat, what is
a measure and what is the difference between chorus and verse.

7.4 Road Map

Software tends to evolve over time, so advances in the field of beat tracking
and recognition may broaden the usage of this approach to a wider variety
of musical genres as well as stabilize results on existing genres known to
work rather well.

The simplification of the musical input annotation process by structural
recognition [PMKIO0] may aid the user to segment a song faster. Music
structure analysis still has severe flaws, but even today may give an initial
hint about a song’s part distribution.

These ideas together with the results presented throughout this thesis in-
tegrate into a fully functional application ready to be deployed in the non-
academic world to fit the use cases described earlier.

Improved automatic song annotation, solutions for labelling parts of a
song according to their perceived quality and features like fast, slow, ener-
getic, loud, ambient etc., may come up over time, and enable building huge
databases of music that can be retrieved to reassemble a novel soundtrack
with respect to some descriptions of high level features.

Solutions for automatic song generation to accompany a silent video may
come to light, that take into account the mood perceived in the video, and
then query a database as described before, for some matching music seg-
ments to be rearranged to generate a novel soundtrack.

The road to future developments converges as a small, distant point to-
wards the horizon, alongside which other great ideas will arise within this
research area.
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