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Abstract

We present an interactive player for free-viewpoint
video. Free-viewpoint video data typically consist of large
amounts of video datasets captured from multiple cameras
and additional inter-view and frame information. Neither
the size nor the representation of this data is appropriate
for real-time rendering. Inspired by a new image interpola-
tion approach based on correspondence fields, we propose
a data compression algorithm for streamable multi-view
video sequences allowing a real-time decoding and play-
back for videos of arbitrary length without loading them
completely into cache.

1. Introduction
In the last few years, several free viewpoint video play-

ers have been introduced. Based on image interpolation al-
gorithms for different camera views or points in time, they
allow the user to navigate freely through the video, generat-
ing new camera views on the fly. But these image interpo-
lation algorithms rely on additional warping data increasing
the input data vastly. Existing free viewpoint players coun-
termeasure this problem by preloading the complete video
data into the cache, allowing a fast access but limiting the
player to short videos. Alternatively, some restrictions are
made concerning either the scene geometry (e.g. [1]) or the
camera setup (e.g. [2]), reducing the complexity of possible
camera warps and hence the needed interpolation data.

Inspired by a new image interpolation algorithm based
on correspondence fields ([3], [4]), we present a data com-
pression method reducing these correspondence fields to a
size where the implementation of a streamable video player
becomes feasible. Hence, our player is able to playback
multi-video sequences of arbitrary length and without any
restrictions to the scene or camera setup, still offering full
user interactivity.

For data reduction, we convert the floating point values
of correspondence fields to byte size and employ single im-
age compression. In order to guarantee real-time capability,

we design a container format which allows caching, multi-
threading, and prefetching.

The paper is organized as follows. After giving an
overview of related work in Section 2, we summarize the
used rendering approach in Section 3. We present and dis-
cuss our approach for multi-view video data compression in
Section 4. Implementation details ensuring real-time play-
back are given in Section 5, followed by a presentation of
our results in Section 6 and a short discussion in Section 7.

2. Related Work

Evolving real-time playback of free-viewpoint multi-
view video involves many tasks that need to be taken care
of. Multiple video-streams and warp-fields must be com-
pressed in order to keep the amount of data as small as pos-
sible. Image interpolation methods must be chosen wisely
and implemented efficiently to ensure smooth playback and
navigation. All these areas of research received a lot of at-
tention in computer graphics.

2.1. Multi-view video compression

Multi-view video compression can have a significant im-
pact on quality, size and computational effort. Regard-
ing quality, wavelet-based multi-view video compression
(MVC) schemes (like [5]) provide high quality video com-
pression. But especially wavelet-compression usually has
high computational demands. Other approaches like MVC
using layered depth images (LDI) (e.g. [6], [7], [8], [9],
[10]) produce plenty of overhead. As backward decom-
pression causes severe performance fall-offs, these MVC
schemes are not suitable for the realtime player. An effi-
cient coding scheme has been proposed by Magnor et al.
[12]. However, it relies on a priori knowledge of the scene
geometry.

2.2. Floating-point data compression

The creation of deformation vector fields as described in
[3] is quite time-consuming, disqualifying it for real-time
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purposes. In order to achieve this capability, these warp-
fields need to be precomputed and stored to disk. Usually
consisting of 32-bit floating point data, the amount of data
is huge and needs to be significantly reduced for real-time
playback purposes. Streamable floating-point data com-
pression algorithms like [13] or [14] usually support very
good compression rates paired with acceptable computa-
tional effort, but are still not suitable for our purpose. Nei-
ther the size, nor the computational effort is small enough
for real-time playback in our multi-view video environment.

2.3. Interpolation

Image interpolation is the key task in free-viewpoint
multi-view video playback. Many recent approaches orig-
inate from Image-based rendering (IBR). IBR approaches
(eg. [2], [15], [16], [17]) are capable of producing high-
realistic results but usually depend on camera-calibration,
time-synchronization or other additional information like
scene depth, geometry or epipolar constraints. Further im-
provements can be made when the data is fitted to a scene
or actor model [1]. In contrast, we can cope with scenes,
where the geometry is unknown, changes over time or is
even impossible to reconstruct. In [2], a real-time player
quite similar to this one is presented by Zitnick et al., but be-
ing based on a specific camera setup. All cameras are lying
on a horizontal plane next to each other and point roughly
into the same direction. Hence, the complexity of possible
camera warps shrinks enormously. In addition, Zitnick et
al. only allow spatial camera interpolation. Our approach
also allows interpolation in time and works with unsynchro-
nized cameras. Recently, a free viewpoint system for static
scenes has been proposed by Hornung et al. [18].

Other approaches are based on Optical flow. Referring to
a certain flow field created by spatiotemporal trajectories of
image-regions within an image sequence, this technique can
be used to interpolate between two or more images. Several
approaches [19] using these flow fields have been proposed
in the last years creating promising interpolation results.

Recently, Stich proposed a novel approach [3] outper-
forming optical-flow based interpolation algorithms in qual-
ity and IBR-algorithms in configuration effort. Since our
video player is based on his approach, we will discuss it in
more detail in Section 3.

3. Virtual Video Camera
Our video player utilizes the image interpolation algo-

rithm proposed by Stich et al. [3].
Stich’s basic assumption is that robustly matching visible

edges is the key to visually plausible image interpolation.
First, he finds predominant edges [20] and homogeneous
regions [21] in two images. A bipartite matching of edge
pixels in the two images yields sparse correspondences. For

each homogeneous region these correspondences define the
overall transformation into the other image. The resulting
dense deformation vector fields, containing 2D float data,
describe a complete 1 : 1 relation between the pixels of the
source and target image. Therefore, they can be applied by
any factor between 0 and 1 to create as many in-between
images as desired.

Since our goal is not only to interpolate between two
views of a scene, but to freely change viewing direction
and playback rate, we use an extension of Stich’s origi-
nal rendering. We represent each input image by a three-
dimensional vertex, encoding horizontal and vertical view-
ing direction as well as playback time.

The resulting point-cloud can be tessellated using the
Delaunay-tessellation. Within this mesh, each imaginable
point lies in exactly one tetrahedron (Fig. 1). Thus,
interpolation-weights as demanded by Stich’s interpola-
tion approach can be easily estimated by computing the
barycentric-coordinates of the desired view-point in its
tetrahedron.

Figure 1. Warping within a 2D or 3D environment. The green,
turquoise and red arrows describe the weights, the gray the corre-
spondence fields mij and mji. The blue circle is the target point.

Let us assume we like to render an image v at an arbitrary
viewing direction and point of time. Due to the Delaunay
triangulation, v lies inside a single tetrahedron λ. Rendering
of this image is done by forward warping and blending of all
four input images v1, ..., v4 associated with λ (Fig. 2). E.g.,
for image v1 rendering is done as follows. For every pixel
position in the correspondence maps mij from the images
vi to vj , a vertex is created and displaced according m12,
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m13 and m14. These displacements are weighted by the
barycentric coordinates w1, ..., w4 of v in λ, resulting in a
forward warped image v

′
1. The same procedure is applied to

v2, ..., v4. The final image is created by blending v
′
1, ..., v

′
4,

again weighted by w1, ..., w4. For further information, e.g.
occlusion handling and image alignment, we refer to [3].

Figure 2. Forward warping, with (from top to down): the orig-
inal input images, the single correspondence fields (exported as
red/green images), the forward warped input images and the result
from blending the warped images.

4. Data Compression
As mentioned in the introduction, the presented player

will enable the user to arbitrarily navigate through time and
space within the video. For preserving the real-time ca-
pability, a fast access to the video data as well as an easy
handling is essential. Further, the appropriate correspon-
dence fields, presented in [3], have to be processed on the
fly. Thus, we will try to reduce the file size of the required
data as much as possible while still preserving low decom-
pression effort.

4.1. Correspondence Field Compression

Simplified, a correspondence field contains in each entry
a pixel displacement vector, normally encoded in two 32-

bit floats (displacement in x and in y-axis). For a video
with a resolution of 960x540 this results in a file size of
approximately 4 MB. As for navigation along the negative
time axis the reverse correspondence fields are needed as
well, the huge amount of 8 MB warp data has to be handled
per camera pair per frame, in addition to the video data.

Even though in most cases the correspondence field can
be reduced to the quarter size of the actual image still pro-
viding nearly flawless interpolation results, the amount of
raw data is still too much for desirable file-sizes and smooth
playback, specifically from local storage like hard disks.
Hence, the data needs to be compressed in order to gain fur-
ther performance improvements and appropriate file sizes.

In order to reduce the file size of the correspondence
fields, we benefit from existing and well known image com-
pression algorithms. As for one warp, two float values have
to be compressed, the HDR-image format OpenEXR comes
to mind, as it is capable of dealing with floats directly.
But even with the usage of 16-bit floats, as supported by
OpenEXR as half, still the resulting files exceeded a man-
ageable file size. The combination of these halfs with a
float-compression algorithm such as PXR24 yields a com-
putational effort regarding the decompression exceeding the
maximum of 40 ms needed for framerates of 25 fps and
higher. Similar restrictions apply to video codecs such as
mpeg or H.264.

In contrast, using JPEG to compress the single warps
guarantees small correspondence files and a short decom-
pression. But as JPEG consists of three 8-bit (RGB) integer,
a pre-transformation from float to byte is necessary. How-
ever, the hence made error, combined with the compression
flaw, has a negative influence on the rendering result. Fur-
ther, the third color channel remains unused. Thus, we de-
cided to use the lossless PNG-compression instead.

Instead of simply rounding the original float values to
integer (as this would restrict us to a maximal displace-
ment between -127 and 127), we first determine the maxi-
mal (maxx and maxy) and minimal (minx and miny) dis-
placement values of the entire correspondence field. The
respective stepsize is given as

step{x,y} =
max{x,y} −min{x,y}

28 − 1
(1)

and can be used to express the single displacement warps:

R =
fX −minx

stepx
; G =

fY −miny

stepy
(2)

with fX and fY the displacement values and R and G the
first two entries in the PNG-pixel. Saving minx and miny

as well as the stepsizes in x and y in the PNG-header en-
ables a simple reconstruction:

fX = minx + (R ∗ stepx)
fY = miny + (G ∗ stepy) (3)
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The hereby made error is propotional to the stepsize and
thus stays relatively small compared to the scene motion.

Furthermore, a PNG pixel consists of four channels
(RGBA) while only two are needed for saving one pixel
warp. Hence, this enables us to encode both correspondence
fields resulting from comparing two images in a single file,
reducing harddisk lookups.

Combining this float conversion with the PNG compres-
sion yields average file sizes of 13 KB (for small corre-
spondence fields of 240x135). Compared to the raw float
data of 506 KB, this is a stunning compression factor of
nearly 39 with a very low decompression cost.

4.2. Video Compression

Besides warp compression, the high amount of video
data is the second problem to be considered. Existing video
compression algorithms all share the aspect of exploiting
similarities between multiple frames. More exactly, most
compressed frames depend on their predecessor (referred to
as I-, P- and B-frames). For a backward playback of the
video however, this results in an intensive CPU- and HDD-
load since multiple images have to be decoded per frame.
To avoid this, every image has to be compressed on its own.

We decided to choose the JPEG compression for this
task, as it yields a manageable file size with low decom-
pression effort. The compression is not lossless, but how-
ever, artifacts could rarely be seen in the resulting video.

5. Implementation Details
Even though the final results regarding compression re-

duce the data to a manageable amount, the data still resides
in single files across the storage preventing a fast access. All
of the resulting data has to be combined and besides video
frames and warps, the camera configuration, tetrahedra and
playback information needs to be integrated, too. Thus, we
designed a special container. The configuration and tetrahe-
dra are stored at the beginning of the container file. Next, all
the compressed video frames and warps are stored. Finally,
a frame and warp index-table containing their in-file posi-
tion, their size and an identifier is created. The index-table
provides the opportunity to jump arbitrarily at any position
within the container to obtain the desired data. We make
use of single image compression techniques and encode the
data in the correct temporal order. Therefore, single frames
can be read and displayed consecutively making streaming
possible.

For further performance improvements, the warp decom-
pression and the image warping as well as the rendering
are computed in separated threads. To avoid locking issues,
each thread manages its own cache. Depending on user in-
put, we estimate whether or not different frames or warp-
fields will be demanded in the next rendering loop. During

GPU-rendering, the CPU can prefetch these data. A specif-
ically designed user interface gives the user the opportunity
to change view direction and control playback rate (Fig. 3).

Figure 3. The graphical user interface of the free viewpoint video
player. Resembling to a standard media player interface with play,
pause and stop buttons as well as a progress bar, our player pro-
vides additionally the possibility to adjust the playbackrate. By
dragging the left mouse button, the viewpoint can be changed in-
teractively.

6. Results

Due to a low decompression effort and a compact data
storage, as well as the in Section 5 presented acceleration
approaches, a high rendering speed can be achieved. De-
pending on the video resolution and the correspondence
field size, frame rates beyond the 25-fps are reached. As
the original video is normally recorded at this frame rate,
a higher display rate cannot enhance the output quality any
more. Besides, the used hardware, especially the graph-
ics card, influences the rendering speed as well. Thus, we
tested three different graphics cards in a standard pc, vary-
ing from a ATI 3850 HD, over a Geforce 8800GTS to a
Geforce 260GTX (entitled as low, med and high). The re-
sults are shown in Table 1.

Two different scenes have been captured with our tech-
nique, the firebreather sequence and the dancer sequence
(see Fig. 4). We chose these two scenes because they
pose different challenges to our system. The firebreather
sequence contains dynamic illumination and volumetric ef-
fects. Whereas the dancer sequence exhibits large scene
motion. In both examples we used the input of twelve cam-
eras arranged in a 4x3 array.
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Table 1. Rendering performance comparison in respect to the
tested computer systems. Grid-resolution denotes the actual res-
olution of the vertex mesh used for computing the forward warps.
The FPS-values are split in pure-rendering and during playback
(in brackets). The≥60 FPS results from vertical sync being active
limiting the rendering speed to the refresh-rate of the monitor.

Figure 4. Dancer test sequence with large scene motion.

6.1. Compression Rate

As mentioned before in Section 4.1, we achieve a high
data compression rate, especially on the correspondence
fields. For small correspondence fields (as 240x135), the
raw 32-bit float data would have a size of 240∗135∗4∗2∗2
Byte ≈ 506 KB, reduced to a PNG of only 13 KB (one
factor of 2 results from a warp consisting of two float val-
ues, in x and y-axis, and the second factor of 2 is due to
the backward correspondence field saved in the same PNG).
This yields a size reduction factor of approximately 39. Fur-
ther, the backtransformation from the saved stepsizes to the
original float data is done in a few multiplications and takes
no time, whereas the PNG decompression can be done on
the CPU during rendering. The JPEG compression of the
video files does not result in a further downsizing compared
to standard video codecs, but is the only possibility to en-
sure a free navigation in time during playback. The main
disadvantage of such a high compression rate of the corre-
spondence fields is the resulting quality loss. The decom-
pression error results from the discretization of the single
warps relative to the stepsize. Hence, for scenes with higher

motion also the error increases, but in all regarded scenes,
the error was not noticeable.

The impact of the data compression on the rendering
quality is rarely noticeable. Hence, the output video looks
as the offline results presented in [4]. We included a video
of our FVV player and a Windows executable, download-
able at: http://graphics.tu-bs.de/publications/mvcWin32.zip
(60 mb). For subjected quality assessment we would like to
refer to this extra material.

7. Conclusion
In this paper, a whole framework for free viewpoint

videos has been introduced and a simple and user-friendly
UI has been designed. Furthermore, video and warp com-
pression has been evaluated and implemented and all nec-
essary data regarding the playback has been concatenated
in a special container format. Finally, a novel image inter-
polation algorithm has been integrated to provide the actual
FVV capability.

The results clearly state the capabilities of this approach.
Depending on the resolution of the video, the player is capa-
ble of rendering free-viewpoint video in real-time. Even the
playback of videos from USB flash drives is possible with
more than 25FPS at resolutions of quarter-HD. Further-
more, the final compression-rate of the source data is high
enough to make the FVV player available as a download-
able application including sample videos for live demon-
stration purposes.

But even though the player is thoroughly usable as a real-
time FVV system, several tasks reside in the future. First of
all, a dynamic density adaption of the vertex mesh could
significantly reduce the load of the GPU and thus improve
rendering speed up to full-HD capabilities. From the imple-
mentation point of view, other multithreading schemes or
even multiprocessing should be evaluated because it could
significantly improve the overall performance. Specifically
the new features of DirectX 11 regarding multithreaded ren-
dering should be evaluated, since those probably open com-
pletely new opportunities compared to DirectX 9/10.

But besides demonstration purposes of one single inter-
polation approach, the space-time player could also be used
to compare other state-of-the-art and future interpolation al-
gorithms with each other since those are easily integrated in
this framework.
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