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Abstract

In model-based free-viewpoint video, a detailed representation
of the time-varying geometry of a real-word scene is used
to generate renditions of it from novel viewpoints. In this
paper, we present a method for reconstructing such a dynamic
geometry model of a human actor from multi-view video.
In a two-step procedure, first the spatio-temporally consistent
shape and poses of a generic human body model are estimated
by means of a silhouette-based analysis-by-synthesis method.
In a second step, subtle details in surface geometry that are
specific to each particular time step are recovered by enforcing
a color-consistency criterion. By this means, we generate
a realistic representation of the time-varying geometry of a
moving person that also reproduces these dynamic surface
variations.

1 Introduction

In a free-viewpoint video, the 3D appearance of a real-world
scene is represented in such a way that artificial renditions of
the scene from arbitrary novel viewpoints can be generated.
To this end, model-based free-viewpoint video methods
employ explicit models of dynamic scene geometry and
dynamic surface texture. Typically, these dynamic scene
models are directly reconstructed from multi-view video
footage, or an a priori model is adapted to match the scene
appearance in input image data. We have demonstrated that
a model-based algorithm, which simultaneously captures the
shape, the motion and the texture of a moving person from
multi-view video, can generate highly realistic free-viewpoint
renditions of human actors [3]. In our original method, an
enhanced texturing approach enabled us to create realistic
scene renditions although only approximate scene geometry
was available that could not model subtle time-varying shape
details. To bridge this gap, we present in this paper a method
that also reconstructs these dynamic geometry details on the
body model from multi-view video.

To serve this purpose, we have developed a two-step algorithm
that modifies the pose and the surface geometry of a template
human body model such that it matches the appearance of a

human actor in all time steps of input video footage. In the
first step, a set of anthropomorphic shape and pose parameters
are estimated via a silhouette-based analysis-by-synthesis
approach to obtain a spatio-temporally silhouette-consistent
body representation. In a second step, subtle dynamic changes
in surface geometry that are not captured by the silhouette-
consistent model are reconstructed via color-consistency-based
mesh deformation.

2 Related Work

If convincing novel viewpoint renditions of a dynamic real
world scene shall be generated, a representation of the
time-varying scene geometry is required. Many approaches
have been proposed in the literature to reconstruct such
representations of arbitrary scenes from image or video data.
Shape-from-silhouette methods reconstruct the geometry from
multi-view silhouette images or video streams. Examples
are image-based [12, 18] or polyhedral visual hull [11]
methods, as well as approaches performing voxel-based [13]
or point-based [6] reconstruction. Stereo methods have also
been applied to reconstruct and render dynamic scenes [19, 8].

If the moving subject in the scene is a person, structural
knowledge about the human body can be exploited to facilitate
shape reconstruction. In [1], laser range scans of a human
torso and the arms are employed to reconstruct a model of
body deformation. The poses of a kinematic skeleton are
measured by means of a marker-based motion capture system.
In [17], a model of surface deformation for the complete human
body is reconstructed by jointly employing a marker-based
motion capture method and multi-view silhouette matching.
Both approaches produce highly detailed deformable bodies,
but their commitment to a marker-based motion capture system
makes it hard to use them for 3D video reconstruction.

More similar to our method is the work presented in [15],
where a sophisticated body model comprising a kinematic
skeleton and a deformable surface geometry is fitted to video
data. The work presented in [7] is also closely related to our
approach. Here a procedure based on silhouette, stereo and
feature correspondence information is described, which is able
to reconstruct a human model from multiple camera views.

In our work, we extend the approach presented in [3] such
that it also captures subtle time-varying geometry details in a
generic human body model. To this end, we do not only resort
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Figure 1: Visualization of the interplay of the individual processing steps in our approach.

to multi-view silhouette matching, as we have done it before,
but also make use of a color-consistency criterion. In principle,
subtle geometry inaccuracies in a silhouette-fitted body model
can be compensated in rendered free-viewpoint videos by
applying a clever texture generation scheme. Nonetheless, it
can further improve the visual quality of a 3D video if a more
detailed geometry representation is available that captures the
time-varying body shape more accurately.

3 Overview

Fig. 1 illustrates the algorithmic workflow between the main
components in our approach. The system expects multiple
synchronized video streams (so-called multi-view video or
MVV streams) of an arbitrarily moving person as input
(Sect. 4). Our scene representation is based on a generic
human body model that comprises a triangle mesh surface
representation and an underlying kinematic skeleton (Sect. 5).
We employ a two-step procedure to reproduce the shape and
the pose of the actor in the real world at each time step of
video with our body model.

In the first step (Sect. 6), we apply a silhouette-based analysis-
by-synthesis method to estimate the correct body pose of the
model at each time step of video. We also estimate body
shape parameters that make the model globally consistent with
the person’s silhouettes at each time step. Unfortunately,
this spatio-temporally consistent scene representation (STC
representation) does not reproduce subtle time-varying changes
in the geometry of the body surface.

We recover these dynamic geometry variations by computing
appropriate vertex displacements for each time step of video
separately (Sect. 7). To this end, we jointly employ a color- and
silhouette-consistency criterion to identify slightly inaccurate
surface regions of the body model which are then appropriately
deformed by means of a Laplacian interpolation.

The output of our method is a dynamic scene model for

a moving human actor that also reproduces time-varying
geometry variations (Sect. 8).

4 Multi-view Video Recording

The multi-view video (MVV) sequences used as input to our
approach are recorded in our multi-view studio. It enables us
to capture an area of approximately 4x4x3m with eight frame-
synchronized video cameras, which are placed in a convergent
arrangement around the center of the scene. ImperxTM MDC-
1004 cameras are employed, featuring a 1004x1004 CCD
sensor and delivering 25 fps. The cameras are calibrated into a
common coordinate frame. Color-consistency across cameras
is ensured by applying a color-space transformation to each
camera stream.

For each MVV sequence that serves as input to our method, the
person first strikes an initialization pose for a short moment,
and thereafter is free to move arbitrarily. In a post-processing
step, the silhouette of the person in each frame is extracted via
color-based background subtraction.

5 An Adaptable Human Body Model

We employ a template human body model whose shape and
proportions can be customized in order to optimally reproduce
the appearance of a person in the real world (Fig. 3a). The
kinematics of the model are represented by means of a skeleton
comprising 16 segments and 17 joints that provide 35 pose
parameters in total. The surface geometry of each segment is
represented via a closed triangle mesh.

Two sets of anthropomorphic shape parameters are provided
which are modified during reconstruction of a spatio-
temporally consistent scene representation (Sect. 6). The first
set consists of a uniform scaling parameter for each bone. The
second set of parameters consists of four sets of control values
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Figure 2: (a) Scaling curve before and after deformation; (b) Local sagittal and frontal planes for a body segment; in each of
these planes two scaling curves are defined that scale the segment’s geometry in opposite directions; (c) Torso segment before
(left) and after (right) free-form deformation.

for each segment, which define one-dimensional B-spline
scaling curves that enable free-form geometry deformation.

In addition to the anthropomorphic parameters, the model also
provides additional shape refinement parameters that enable a
more detailed shape control. For each vertex, a displacement
in the direction of the local normal can be specified. The
per-vertex displacement parameters are modified during our
dynamic shape refinement procedure (Sect. 7).

6 Spatio-temporally Consistent Shape Reconstruction

In the first major step of our dynamic scene model
reconstruction method, we estimate a spatio-temporally
consistent geometry description, a so-called STC
representation. The STC representation has two characteristic
features: Firstly, the pose of the generic human body model
matches the pose of the real-world actor at each time step of
video. Secondly, a constant set of anthropomorphic shape
parameters for the body has been identified such that the model
is multi-view silhouette-consistent in several body poses.

To reconstruct the STC representation, we extend the
silhouette-based analysis-by-synthesis approach originally
proposed in [3]. This method performs an optimization
search in the anthropomorphic shape and the pose parameters
in order to maximize the overlap between the silhouette of
the reprojected model and the image silhouette in all camera
views. The energy function EF that numerically assesses
this overlap sums up the number of set pixels in binary XOR
images between image and model silhouettes from all camera
perspectives. By this means, we first customize the skeleton
dimensions of the template human body model (Sect. 6.1).
Thereafter, in an iterative procedure we find an optimal set of
pose parameters for each time step of video and a globally
optimal set of B-spline scaling parameters (Sect. 6.2).

6.1 Adapting the Skeleton

To customize the bone lengths of the default skeleton we
only employ the eight input frames depicting the person in
the initialization pose. Our skeleton rescaling method is an
iterative procedure that alternates between an optimization
of pose parameters and an estimation of uniform scaling
parameters.

In the first step of each iteration the uniform scaling parameters
of all body segments are adjusted. The second step of each
iteration uses the rescaled body model and computes an
estimate of the body pose parameters. These two steps are
repeated several times. Fig. 3b shows the model after the
kinematic skeleton has been shape-adapted to the proportions
of our test subject.

6.2 Joint Pose Estimation and Spatio-temporal Free-form
Deformation

We have developed a novel spatio-temporal free-form
deformation scheme that deforms the individual segment
geometries until they are in accordance with the actor’s body
in multiple body poses. The deformation of each individual
segment is controlled by the anthropomorphic B-spline
parameters. For each of the 16 triangle meshes, four local
B-spline curves are defined. Each of these curves scales the
geometry in one specific local coordinate direction (Fig. 2a).
Two of the scaling curves deform the mesh in two opposite
scaling directions in the sagittal plane, the two others do the
same in the local frontal plane (Fig. 2b).

The geometry of one individual segment is deformed
by simultaneously finding four optimal sets of N local
control values. Each set of control values specifies one
of the local scaling curves. The criterion that guides the



optimization search is the previously mentioned silhouette-
XOR energy function, EF . We have tested two numerical
optimization schemes to minimize this error function in
the deformation parameters, the LBFGS-B method [2] and
Powell’s method [16]. Both methods tend to converge to
similar solutions but the former one is preferable since it
converges much faster.

We also performed experiments to determine the best number
of control values to be used for each scaling curve. Many
control values can capture much of the details of a body
segment. On the other hand, the optimization takes longer
and often does not converge. Therefore, we have decided to
use only 4 control values for each scaling curve (N = 4),
totalling 16 parameters for each segment, which is a good
compromise between optimization speed and shape modeling
precision. Fig. 2c shows the torso segment before and after
free-form deformation.

We have developed a spatio-temporal optimization procedure
that employs the previously described principle to shape-adapt
the geometry of all body segments. It allows us to robustly
infer deformation values that correctly reproduce the geometry
of an actor not only in one but in several body poses. Since the
stance of the skeleton changes over time, we apply a two-step
iterative procedure that alternates between pose determination
and segment deformation.

In the first step of each iteration, the pose parameters of the
model at each time step of video are estimated using the
silhouette-based analysis-by-synthesis approach.

In the second step, the B-spline control values for each of
the 16 segments are computed by means of the previously
described optimization scheme. To this end, K time steps of
video are automatically selected out of the M time steps that
the input video sequence contains. We find scaling parameters
that optimally reproduce the shape of the segments in all
of these K body poses simultaneously. A modified energy
function EFR sums over the silhouette-XOR contributions

(a) (b) (c) (d)

Figure 3: (a) Adaptable generic human body model; (b) initial
model after skeleton rescaling; (c) model after one and (d)
several iteration of the spatio-temporal free-form deformation
scheme.

EFI at each of these K time steps, EFR =
∑K

I=1
EFI . We

do not optimize the shape of all 16 segments at the same time
but in a sequence that complies with the skeleton hierarchy of
the body model. First the deformation of the torso is computed,
thereafter the scaling of the upper arms and upper legs, and so
on.

Optionally, the two-step optimization procedure can be
repeated several times. At the end, the model possesses a
spatio-temporally silhouette-consistent shape (Fig. 3d).

7 Dynamic Shape Refinement

The STC scene representation that we have now at our
disposition is globally silhouette-consistent with a number of
time steps of the input video sequence. However, although
the match is globally optimal, it may not exactly match the
actor’s silhouettes at each individual time step. In particular,
subtle changes in body shape that are due to muscle bulging or
deformation of the apparel are not modeled in the geometry.
Furthermore, certain types of geometry features, such as
concavities on the body surface, can not be captured from
silhouette images alone.

In order to capture these dynamic details in the surface
geometry, we compute per-vertex displacements for each time
step of video individually. To this end, we also exploit the
color information in the input video frames.

Assuming a purely Lambertian surface reflectance, we estimate
appropriate per-vertex displacements by jointly optimizing
a multi-view color-consistency and a multi-view silhouette-
consistency measure. Regularization terms that assess mesh
distortions and visibility changes are also employed.

The following subsequent steps are performed for each body
segment and each time step of video:

• Regions on the body model are identified in which the
STC representation does not match the actor’s shape
according to a color-consistency measure (Sect. 7.1).

• A number of random seed vertices in each region are
displaced along their local normal directions (Sect. 7.2).

• Using the seeds’ displacements, all vertices belonging to
the color-inconsistent region are displaced by means of a
Laplace interpolation (Sect. 7.3).

7.1 Identification of Color-inconsistent Regions

We use color information to identify, for each time step of video
individually, those regions of the body geometry which do not



fully comply with the appearance of the actor in the input video
images. To numerically assess the geometry misalignment, we
compute for each vertex a color-consistency measure similar
to the one described in [5]. To this end, for vertex j with 3D
coordinate vj we first average the colors of those image pixels
from all camera views to which vertex j projects:

I(vj) =

∑K

i=1
γi(vj)Ii(vj)

∑N

i=1
γi(vj)

. (1)

In (1), K is the number of input images, γi(vj) is the visibility
function for image i. It is 1 if the vertex j is visible in image i,
and 0 otherwise. Ii(vj) denotes the color of j in image i. The
color-consistency value for vertex j is then computed as:

EI(vj) =

∑N

i=1
γi(vj)[Ii(vj) − I(vj)]

2

∑N

i=1
γi(vj)

. (2)

By applying a threshold TLOD to the error measure EI(vj) we
can decide if the vertex j is in a photo-consistent or photo-
inconsistent position. If EI(vj) > TLOD, j is classified
as inconsistent, otherwise as consistent. The value TLOD

controls how much of the shape inaccuracy shall be corrected
via vertex displacements. If TLOD is very small, even slightly
shape misalignments are identified. If TLOD is large, only the
most significant geometry discrepancies are recovered. Fig. 5a
illustrates the influence of varying TLOD.

All photo-inconsistent vertices are clustered into contingent
photo-inconsistent surface patches by means of a region
growing method.

7.2 Computing Vertex Displacements

We randomly select M vertices out of each color-inconsistent
region that we have identified in the previous step. For each
vertex j ∈ M with position vj we compute a displacement ~rj

in the direction of the local surface normal that minimizes the
following energy functional:

E(vj , ~rj) = wIEI(vj + ~rj) + wSES(vj + ~rj)+
wDED(vj + ~rj) + wP EP (vj , vj + ~rj)

(3)

EI(vj + ~rj) is the color-consistency measure from Sect. 7.1.

The term ES(vj + ~rj) penalizes vertex positions that project
into image plane locations that are very distant from the
boundary of the person’s silhouette. It evaluates to:

ES(vj + ~rj) = win

∑K

i=1
ESin,i(vj + ~rj)+

wout

∑K

i=1
ESout,i(vj + ~rj)

(4)

ESin,i(v) is the value of the inner distance field to the
silhouette boundary in the image plane of camera i, evaluated

at the projected position of the vertex with 3D position
v. ESout,i(v) is the respective value of the outer distance
field. The inner and outer distance fields for each silhouette
image (Fig. 4) can be pre-computed by means of the method
described in [9].

Figure 4: From left to right: original input image, silhouette
image, outer distance field and inner distance field.

ED(v) regularizes the segment’s mesh by measuring the
distortion of triangles. We employ a distortion measure which
is based on the Frobenius norm [14]:

κ =
a2 + b2 + c2

4
√

3A
− 1, (5)

where a, b and c are the lengths of a triangle’s edges and A is
the area of the triangle. For an equilateral triangle the value is
0. For degenerate triangles it approaches infinity. To compute
ED(vj + ~rj) for a displaced vertex j at position vj + ~rj , we
average the κ values for the triangles adjacent to j.

The term EP (vj , vj + ~rj) penalizes visibility changes that are
due to moving a vertex j from position vj to position vj + ~rj .
It has a large value if in position vj + ~rj the number of cameras
that sees that vertex is significantly different from the number
of cameras that sees it at vj . If the number of cameras that sees
it does not change, EP (vj , vj + ~rj) = 0.

The weights wI , wS , wD, wP are straightforwardly found
through experiments, and are chosen in a way that EI(v)
and ES(v) dominate. We use the LBFGS-B method [2], a
quasi-Newton algorithm, to minimize the energy function
E(vj , ~rj). After calculating the optimal displacement for all
M random vertices individually, these displacements are used
to smoothly deform the whole region by means of a Laplace
interpolation method.

7.3 Deformation of Color-inconsistent Regions

Using a Laplace interpolation (see e.g. [4, 10]), each color-
inconsistent region is deformed such that it globally complies
with the per-vertex displacements. The new positions of the
vertices in a region form an approximation to the displacement
constraints. Formally, the deformed vertex positions are found
via a solution to the Laplace equation

Lv = 0, (6)



where v is the vector of vertex positions and the matrix L is the
discrete Laplace operator with

Lij =







valence(i) if i inner vertex and i = j,
−1 if i inner vertex and j in 1-neighborhood,
0 otherwise.

(7)

The matrix L is singular, and we hence need to add suitable
boundary conditions to Eq. 6 in order to solve it. We
reformulate the problem as

min

( (

L
K

)

v −

(

0
d

))2

(8)

This equation is solved in each of the three Cartesian
coordinate directions (x, y and z) separately. The matrix K
and the vector d impose the individual per-vertex constraints
(Sect. 7.2) which will be satisfied in least-squares sense:

Kij =







wi if a displacement is specified for i,
wi if i is a boundary vertex,
0 otherwise.

(9)

The elements of d are:

di =







wi · (vi + ~ri) if a displacement is specified for i,
wi · vi if i is a boundary vertex,
0 otherwise.

(10)

The values wi are constraint weights, vi is the position
coordinate of vertex i before deformation, and ~ri is the
displacement for i. The least-squares solution to (8) is found
by solving the linear system:

(

L
K

)T (

L
K

)

x = (L2 + K2)x =

(

L
K

)T

d. (11)

Appropriate weights for the displacement constraints are
easily found through experiments. After solving the 3 linear
systems individually (for x, y and z-coordinate directions), the
new deformed body shape that is both color- and silhouette-
consistent with all input views is obtained.

To remove temporal noise from the dynamically refined body
geometry the vertex displacements are gauss-filtered in a post-
processing step.

8 Results

We have tested our method by reconstructing dynamic scene
representations from two multi-view video sequences of a
male actor. In one sequence (160 time steps) the person

walks around in the scene, in the second sequence (210 time
steps) the person performs a Tai Chi move. In Fig. 5b the
STC representation that has only been reconstructed from
silhouette-images, and our color-consistency-refined scene
representation are shown in direct comparison. One can clearly
see that in the refined model the shape of the shoulder region
has been reconstructed with much higher precision. Only
by means of our novel shape refinement procedure we could
capture these pose-dependent geometry variations even with a
segmented body model. The improvements in body geometry
also lead to a better visual quality if the model is used for
rendering a free-viewpoint video, where the body model is
projectively textured with the input video frames. Although
clever texture blending can cloak geometry inaccuracies in
a purely silhouette-fitted body model [3], the dynamically
refined model leads to an even further augmented rendering
quality

Fig. 5d illustrates that our method is capable of reconstructing
dynamic shape variations in the torso while our test subject
performs a Tai Chi move. These shape variations could not
have been modeled with a static set of anthropomorphic shape
parameters. Fig. 5e shows the time-varying geometry of the
leg in a sequence where the test subject is walking around.
Fig. 5c visually illustrates the principle of our dynamic shape
refinement method. First, only a few color-inconsistent vertices
on the body are identified. However, if only these vertices were
displaced, little bumps would appear on the body since the rest
of the geometry remained unaffected. By means of our Laplace
deformation the shape is smoothly deformed into a multi-view
color-consistent configuration.

Fig. 5a visually illustrates that the color-consistency threshold
TLOD (Sect. 7.1) allows the user to control how much dynamic
geometry detail is reconstructed in the shape refinement
process. The images show a color-coded visualization of
photo-inconsistent parts of the body’s geometry for one
particular time instant of video. Color-consistent parts are
shown in red, color-inconsistent parts are shown in black. To
generate the images (from left to right), consistency thresholds
of 100, 150, 175, 200 and 225 have been used.

Applying our method to the test data, we measured the
following runtimes for the individual processing steps:
Through experimental evaluation, we have found out that it
is sufficient to employ only 5 frames out of the input footage
for spatio-temporally consistent shape reconstruction. On a
PC featuring a PentiumTM 4 CPU and Nvidia GeForce 6800
GPU one iteration of the skeleton adaptation method takes on
average around 1 minute. The runtime of the spatio-temporal
free-form deformation strongly depends on how many time
steps of video are considered. If 5 time steps are employed it
takes around 15 minutes to find optimal scaling parameters.
The dynamic shape refinement procedure takes around 4
minutes per time step when M = 0.1N seed vertices are
employed, N being the number of vertices belonging to a
color-inconsistent region (Sect. 7.2).



Despite the high quality of the reconstructed scene
representations, our approach is subject to a few limitations.
If vertices belonging to a color-inconsistent region are never
seen by any of the cameras at a particular time instant, surface
details can not be recovered for this region. Furthermore, the
very coarse parts of the triangle meshes do not enable us to
capture small surface details, such as small folds in the apparel,
which are below the mesh’s resolution. In consequence, even
on the highest detail level the refined geometry remains a
smooth approximation to the true shape. Finally, the color-
based shape refinement may fail if the person wears clothes
that exhibit a strong view-dependent reflectance variation.

Despite these limitations, we have demonstrated that we can
robustly reconstruct a realistic dynamic scene representation of
a moving human actor, even though we only employ a rather
generic segmented body model.

9 Conclusions

In this paper, we presented an automatic approach to
reconstruct a dynamic scene representation of a moving human
subject from multi-view video data. Starting from a generic
body model, our method first creates a spatio-temporally
consistent shape representation that matches the actor’s
silhouettes at multiple time instants. Subtle surface details
at each particular time step, which could not be captured
from silhouette images alone, are identified by employing
color-consistency and qualitative criteria. The final dynamic
scene representation realistically recovers even time-varying
geometry details of a moving person by means of a generic
segmented body model. In the future, we plan to reconstruct
detailed surface reflectance models from multi-view video,
and to use them for shape refinement of body surfaces with
arbitrary reflectance properties.
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Figure 5: (a) Different amounts of details can be reconstructed at each time instant by varying TLOD; (b) Improvements in the
shoulder geometry by applying the dynamic shape refinement method; (c) Illustration of the dynamic shape refinement process:
if only random seed vertices would be displaced, all the remaining geometry would be unaffected; the Laplace interpolation
smoothly deforms the whole geometry; (d) Different time instants of a Tai Chi motion; the time-varying shape of the torso has
been recovered; (e) Dynamic changes in the leg’s geometry while the person is walking.


