Computer Graphics
TU Braunschweig

ICG Dome

Abstract

Featuring more than 10 million pixels at 120 Hertz refresh rate, full-body motion capture, as well as real-time gaze tracking, our 5-meter ICG Dome enables us to research peripheral visual perception, to devise comprehensive foveal-peripheral rendering strategies, and to explore multi-user immersive visualization and interaction.


 

 

The ICG Dome
DFG Grossgerät INST 188/409-1 FUGG

Specs

5-meter projection dome
Six 120Hz, 2560x1600-pixel video projectors
Six high-end render nodes + master PC
Integrated 120Hz, real-time eye tracking system
Integrated full body motion capture system
3D shutter glasses

Exploring the Human Visual System

In the periphery of our field of view, our visual sense differs distinctly from our foveal vision. Different psychophysical rules apply to our peripheral vision that need to be re-evaluated with respect to novel wide field-of-view and immersive display technologies. Our Dome enables us to systematically and comprehensively explore and quantitatively model the perceptual properties of our Human Visual System for computer graphics applications.

Peripheral Rendering

With the advent of mass-marketed head-mounted displays and proliferating immersive VR applications, computer graphics algorithms must simultaneously cater to our consciously perceived foveal vision as well as to our mostly subconsciously perceived peripheral field of view. If gaze direction is measured in real-time, can be reliably predicted or steered, gaze-contingent rendering methods are able to make use of a number of perceptual strategies to improve perceived visual quality, to cut down on computation time, and to subconsciously influence our perception of situational atmosphere. Our dome is the perfect tool to develop and evaluate novel gaze-contigent rendering techniques that take our entire field of vision into account.

Multi-User Immersive Visualization and Interaction

A digital planetarium is an immersive theatre built to present educational and/or entertainment content to an audience. With its additional eye tracking and motion capture capabilities, our dome facilitates researching novel multi-user interaction paradigms for immersive visualization environments in which the audience takes center stage.

Live eye tracking in the dome.Entering the digital realm.Raising the bar in surround live eye tracking.Body tracking with advanced motion capture.Science in stereo.

 

You can find the dome at our Aufnahmestudio und Visualisierungslabor at the northern campus.

 

Publications

Steve Grogorick, Michael Stengel, Elmar Eisemann, Marcus Magnor:
Subtle Gaze Guidance for Immersive Environments
in Proc. ACM Symposium on Applied Perception (SAP), ACM, to appear.

Martin Weier, Michael Stengel, Thorsten Roth, Piotr Didyk, Elmar Eisemann, Martin Eisemann, Steve Grogorick, André Hinkenjann, Ernst Kruijff, Marcus Magnor, Karol Myszkowski, Philipp Slusallek:
Perception-driven Accelerated Rendering
in Computer Graphics Forum (Proc. of Eurographics EG), vol. 36, no. 2, The Eurographics Association and John Wiley & Sons Ltd., pp. 611-643, April 2017.

Thomas Löwe, Michael Stengel, Emmy-Charlotte Förster, Steve Grogorick, Marcus Magnor:
Gaze Visualization for Immersive Video
in Michael Burch, Lewis Chuang, Brian Fisher, Albrecht Schmidt, Daniel Weiskopf (Eds.): Eye Tracking and Visualization, Springer, ISBN 978-3319470238, pp. 57-71, March 2017.


Michael Stengel, Steve Grogorick, Martin Eisemann, Marcus Magnor:
Adaptive Image-Space Sampling for Gaze-Contingent Real-time Rendering
in Computer Graphics Forum (Proc. of Eurographics Symposium on Rendering EGSR), vol. 35, no. 4, pp. 129-139, July 2016.
EGSR'16 Best Paper Award

Benjamin Meyer, Steve Grogorick, Mark Vollrath, Marcus Magnor:
Simulating Visual Contrast Reduction during Night-time Glare Situations on Conventional Displays
in ACM Transactions on Applied Perception, vol. 14, no. 1, pp. 4:1-4:20, July 2016.

Related Projects

Eye-tracking Head-mounted Display

Immersion is the ultimate goal of head-mounted displays (HMD) for Virtual Reality (VR) in order to produce a convincing user experience. Two important aspects in this context are motion sickness, often due to imprecise calibration, and the integration of a reliable eye tracking. We propose an affordable hard- and software solution for drift-free eye-tracking and user-friendly lens calibration within an HMD. The use of dichroic mirrors leads to a lean design that provides the full field-of-view (FOV) while using commodity cameras for eye tracking.

Immersive Digital Reality

Motivated by the advent of mass-market head-mounted immersive displays, we set out to pioneer the technology needed to experience recordings of the real world with the sense of full immersion as provided by VR goggles.

Simulating Visual Perception

The aim of this work is to simulate glaring headlights on a conventional monitor by first measuring the time-dependent effect of glare on human contrast perception and then to integrate the quantitative findings into a driving simulator by adjusting contrast display according to human perception.

Visual Fidelity Optimization of Displays

The visual experience afforded by digital displays is not identical to our perception of the genuine real world. Display resolution, refresh rate, contrast, brightness, and color gamut neither match the physics of the real world nor the perceptual characteristics of our Human Visual System. With the aid of new algorithms, however, a number of perceptually noticeable degradations on screen can be diminished or even completely avoided.